(2x^2-9x+3)/(x-3)=x

Simple and best practice solution for (2x^2-9x+3)/(x-3)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2-9x+3)/(x-3)=x equation:



(2x^2-9x+3)/(x-3)=x
We move all terms to the left:
(2x^2-9x+3)/(x-3)-(x)=0
Domain of the equation: (x-3)!=0
We move all terms containing x to the left, all other terms to the right
x!=3
x∈R
We add all the numbers together, and all the variables
-1x+(2x^2-9x+3)/(x-3)=0
We multiply all the terms by the denominator
-1x*(x-3)+(2x^2-9x+3)=0
We multiply parentheses
-x^2+3x+(2x^2-9x+3)=0
We get rid of parentheses
-x^2+2x^2+3x-9x+3=0
We add all the numbers together, and all the variables
x^2-6x+3=0
a = 1; b = -6; c = +3;
Δ = b2-4ac
Δ = -62-4·1·3
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{6}}{2*1}=\frac{6-2\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{6}}{2*1}=\frac{6+2\sqrt{6}}{2} $

See similar equations:

| 0=2x/(3x/40) | | 11.c=88 | | 2.6=1.2-0.4y | | (60)=x/160 | | 5-8x-2x=-15 | | (4x+10)x=90 | | 5(10^(x+2))=60 | | (8x)=(21x-12)=(10x+9) | | 0.7+3b=1 | | 36x−4=1216 | | 1.4x-3.8=7(x+4)-38 | | F(x)^-1=2x^2-8x+3 | | x-2-4x=7 | | 4x(-5)=-20x | | 10x+23=154 | | 6x+22=53 | | 12x+2=38* | | -14n+12n=-10n+6n-6 | | g/4=35 | | x/9=6;63 | | n+5=15n=5 | | 3(3.2-0.4y+4y)=-7 | | r=(64,000/1,000,000)1/3 | | 3(3.2-0.4y+4y=-7 | | p-4.5=8.64 | | 3(3.2-0.4y+y=-7 | | 5n=230 | | |8x+11|=|6x+17| | | 3n+(3n+3)=141 | | –7=-8f+9 | | 1.5+a=3.25 | | 5(3y+4)+2=2=37 |

Equations solver categories